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Abstract: In this research, for the first time, an alternative method to produce Ribes nigrum bud
derivatives is presented. Pulsed ultrasound-assisted extraction (PUAE), using a food-grade solvent
according to green chemistry principles, has been employed and compared to the conventional
extraction method. Traditionally, bud derivatives, a category of botanicals marketed as plant food
supplements in the European Community, are produced by macerating meristematic tissues of trees
and plants mainly spontaneously collected. Buds are a challenging raw material for the UAE, since
meristematic tissues are much softer and fragile than their corresponding adult phenological stage.
It is therefore important to assess whether the polyphenolic fraction, very susceptible to degradation,
is conserved after UAE. Untargeted polyphenolic fingerprints (UV-Visible and fluorescence) coupled
with chemometrics are employed to quickly screen the best extraction conditions, evaluated by the
design of experiment (DoE) method. The polyphenolic fraction of the optimized PUAE extract was
quantified by targeted HPLC fingerprint and its antiradical activity was determined. PUAE on a lab
pilot reactor was proven to be the most practical approach for a rapid (20 min vs. 21 days maceration)
and efficient extraction of bioactive polyphenolics from Ribes nigrum buds, encouraging the scale up
to an industrial plan.

Keywords: phenolic compounds; bud derivatives; Ribes nigrum glyceric macerate; green
chemistry; pulsed ultrasound-assisted extraction; untargeted spectroscopic fingerprint; targeted
chromatographic fingerprint

1. Introduction

FINNOVER “Innovative strategies for the development of crossborder green supply chains” is an
Interreg ALCOTRA Italy/France transfrontier cooperation project (2017–2020) whose main target is
the “green” implementation of some agro-industrial chains [1]. Particularly, the project supports the
creation of both innovative and eco-sustainable production chains of botanicals in order to valorize the
biodiversity of the ALCOTRA territory. One of the main natural products studied in FINNOVER are
bud derivatives, which represent a relatively new category of botanicals marketed, in the European
Community, as plant food supplements according to the Directive 2002/46/EC of the European
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Parliament [2,3]. Bud derivatives are obtained by cold maceration in solvents (i.e., ethanol and glycerol)
of fresh meristematic tissues of trees and plants (i.e., buds and young sprouts) as reported in the
European Pharmacopoeia VIII edition (2014) [2,4,5]. These botanicals are still poorly studied, although
they are widely used in gemmotherapy, a branch of phytotherapy that exploits the properties of these
plant extracts for medicinal purposes [6]. The peculiarity of meristematic tissues in this particular
phenological stage concerns their fragile texture and the high content of compounds which constitute
the bud phytocomplex. In fact, these substances, including mainly flavonoids, enzymes, vitamins,
aminoacids, nucleic acids, and plant hormones, are often present only in trace in the corresponding
adult tissues [5].

In this research, a sonochemical application with a green chemistry approach was presented.
Particularly, pulsed ultrasound-assisted extraction (PUAE) was employed as alternative method to
quickly produce new bud derivatives in comparison to the long traditional maceration in solvent
(21 days) taking under control their total phenolic fraction and antiradical activity to monitor possible
PUAE-induced degradations. Ribes nigrum buds (RNB) were used as case study due to their common
use in herbal medicine for their potential health properties. The most important industrial products
of R. nigrum are its berries, which contain very high amounts of bioactive compounds, particularly
flavonoids, phenolic compounds, and anthocyanins [7–9]. However, R. nigrum bud derivatives also
contain high amounts of polyphenols, representing more than 60% of the bud phytocomplex [7], and
they are widely used for inflammatory, circulatory, respiratory, and cutaneous disorders [10].

Ultrasounds (UAE—ultrasound-assisted extraction) together with microwaves (MAE—microwave-
assisted extraction), supercritical fluids (SCF), and pulsed electric fields (PEF), are emerging “green”
extraction technologies [11]. According to the six principles of the green extraction introduced by
Chemat and colleagues [12] and to the twelve principles of green chemistry set by the Environmental
Protection Agency of USA [13], these eco-compatible extraction techniques, with respect to conventional
methods, aim to reduce the environmental impact in terms of time and energy. Moreover, they reduce
both the quantities of solvents employed, preferring alternative solvents (water or food-grade solvents),
and the generation of waste, hazardous substances, and consequently pollution [11,14]. In particular,
UAE is a relatively simple, cheap, and efficient alternative to conventional extraction techniques whose
main benefits are faster kinetics and increased extraction efficiency [15,16]. In fact, UAE allows one to
quickly extract, with high reproducibility both on small and large scale, a wide variety of bioactive
compounds (i.e., aromas, pigments, antioxidants, and organic and mineral compounds) from several
animal tissues, plants, or food matrices [15,17]. However, the effects of ultrasound on the extraction
yield may be linked to the nature of the matrix. Therefore, the experimental conditions of UAE
must be optimized for each matrix [18]. In a solid/liquid media, the ultrasound waves originate the
cavitation phenomena, a succession of different phases of compression and rarefaction which generates
cavitation bubbles in the liquid. The implosion of the cavitation bubbles on the surface of the solid
material generate microjets, at very high temperature and pressure, which destroy the wall cells of the
matrix, with the consequent recovery of the intracellular content in the extraction solvent. There are
several mechanisms involved (i.e., fragmentation, erosion, sonoporation, detexturation, capillarity)
which independently or in combination influence the final ultrasound extraction yield [17]. When
UAE is used in a pulsed mode (PUAE), the ultrasound processor works intermittently during the
entire extraction process (active time vs. inactive time). This extraction mode reduces the operating
temperature, allowing the extraction of thermolabile compounds and decreasing the possibility to
produce alterations (i.e., oxidation products) in the final extract [19].

Untargeted phytochemical fingerprints coupled with chemometrics [2,20], particularly the
UV-Visible and fluorescence spectra of each extract as multivariate response variables, have been
employed to quickly screen the best experimental conditions of PUAE investigated by the design of
experiment (DoE) method [21]. Finally, the extract obtained by PUAE in the optimized conditions
has been characterized using targeted phytochemical fingerprinting by HPLC [2,22,23] in order to
identify and quantify the main polyphenolic compounds. The polyphenolic fraction has been selected
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as the marker of activity and degradation susceptibility in order to make a comparison with the
corresponding R. nigrum glyceric macerate (RNGM), representing the commercial product.

2. Materials and Methods

2.1. Bud Collection

RNB were collected from plants cultivated in the Bronda valley (Cuneo, Italy), particularly in the
municipality of Pagno (44.597,7.424–44.598,7.424) and Brondello (44.603,7.422–44.603,7.418) in March
2018. Buds, after being certified by a botanical expert, were employed by an Italian Company of food
supplements (Geal Pharma, Bricherasio, Turin, Italy) for the production of the corresponding RNGM.
Particularly, the fresh merystematic tissues were immediately used after their collection in order to
preserve their bioactive compounds. Both the traditional procedure for preparing glyceric macerates,
according to the European Pharmacopoeia VIII edition, and an alternative method that exploits the
action of ultrasounds have been used and compared for the production of the corresponding extracts
(RNGM and RN8).

2.2. Chemicals

Ethanol and glycerol were supplied by VWR International S.r.l (Milan, Italy) and GealPharma
(Bricherasio, Turin, Italy), respectively. All the standards employed for the HPLC analysis were
purchased by Sigma-Aldrich (St. Louis, MO, USA). The purity of all the standards employed was
≥95%. Ultrapure water (18 MΩ) was produced by a Millipore Milli-Q system (Bedford, MA, USA) and
used throughout.

2.3. Traditional Preparation of R. nigrum Glyceric Macerates

RNGM was produced according to the indications of the European Pharmacopoeia VIII edition
(2014), referring to the procedure reported in the French Pharmacopoeia [4]. Particularly, a mixture of
glycerol/ethanol 96% (1:1 w/w) as extraction solvent and a solid–solvent ratio 1:20 between buds and
solvent (considering the dry weight) were employed. The phytocomplex extraction from RNB involved
several steps: a cold maceration for 21 days, followed by a preliminary filtration, a manual pressing,
and, at the end, a second filtration with filter paper (Whatman n. 1) after 2 days of decanting [2,5].
The obtained extracts, which represent the commercial product marketed by GealPharma, were stored
at 4 ◦C in the dark until further analysis.

2.4. Alternative Method to Produce R. nigrum Bud Derivatives: Pulsed Ultrasound-Assisted
Extraction (PUAE)

PUAE was carried out directly by an Hielscher UP200St (Teltow, Germany) in pulsed mode, with
an ultrasonic titanium probe (7 mm diameter) able to transfer, with high efficiency, the acoustic energy
into the treated media [2,24,25]. Fresh RNB were finely ground by a Grindomix 200 M (Retsch, Haan,
Germany), for 20 s at 5000 rpm, and then sieved by a 150 µm sieve. Twenty grams of a glycerol/ethanol
96% mixture 1:1 w/w were added to 1 g (dry weight) of ground RNB in a polypropylene 50 mL
centrifuge tube. The samples were processed in a 200 W ultrasonic processor at a constant frequency
of 26 kHz, with an amplitude level of 30%, optimized in a previous paper from the authors [26],
keeping temperature under control always below 70 ◦C. The pulse duration and pulse interval refer
to “on” and “off” times of the sonicator. The same mixture of glycerol/ethanol 96% (1:1 w/w) and the
same solid–solvent ratio 1:20 between buds and solvent (considering the dry weight), as described
in the Section 2.3, were employed. The duty cycle (pulse) and the extraction time (65% and 20 min,
respectively) were optimized by applying DoE (Table 1). The obtained suspension was then filtered by
Buchner (Whatman n. 44 paper) and the filtrate was centrifuged at 3000 rpm for 10 min. The obtained
solutions were stored at 4 ◦C until the analysis time.
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Table 1. Experimental matrix of the Faced Central Composite Design, the experimental plan (in
brackets), and the obtained response variable (Y).

Experiment
Experimental Conditions Response Variable

X1
Duty Cycle (%)

X2
Extraction Time (min)

Y
PC1 Scores

RN1 −1 (50) −1 (10) 3.222515159
RN2 +1 (80) −1 (10) 2.256792019
RN3 −1 (50) +1 (20) 0.834250201
RN4 +1 (80) +1 (20) −0.535350397
RN5 −1 (50) 0 (15) 0.587361402
RN6 +1 (80) 0 (15) −1.165491045
RN7 0 (65) −1 (10) −0.327200585
RN8 0 (65) +1 (20) −2.638815847
RN9 0 (65) 0 (15) −2.234060907

2.5. Untargeted Fingerprints of The R. nigrum Phytocomplex

2.5.1. UV-Visible Spectroscopy

An Agilent UV-Vis spectrophotometer Cary 100 (Varian Co., Santa Clara, CA, USA) with 0.5 nm
resolution, was employed to record all the UV-Vis spectra of the extracts and the corresponding glyceric
macerates of R. nigrum. Before being analyzed, all the samples were properly diluted 1:20 in the same
extraction mixture (glycerol/ethanol 96% 1:1 w/w). The total spectrum of each analyzed sample was
collected in duplicate at room temperature (25 ± 1 ◦C), against a blank solution (i.e., the extraction
mixture), using rectangular quartz cuvettes with 1 cm path length. For each sample, the resulting
spectra were averaged and used as vector of variables to build the data matrix.

2.5.2. Fluorescence Spectroscopy

The excitation–emission fluorescence spectra were recorded in duplicate at room temperature
(25 ± 1 ◦C) by a Perkin-Elmer LS55B luminescence spectrometer (Waltham, MA, USA) using the
traditional right angle fluorescence spectroscopic technique [27]. A standard cell holder and a 10 mm
quartz SUPRASIL® cell with volume of 3.5 mL by PerkinElmer were used. The emission spectra were
recorded in the range of 450–800 nm, exciting samples at a fixed wavelength (λ ex = 430 nm) [20]. Both
the excitation and the emission monochromator slits were set to 10 nm, with high gain and 600 nm/min
of speed. The same dilution of all the samples, at the ratio of 1:20 with the solvent, was evaluated. For
each sample, the resulting emission spectra were averaged and used as vector of variables to build the
data matrix combing them together with the previous described UV-Vis spectra.

2.6. Experimental Design and Multivariate Data Analysis

DoE was used to optimize the experimental conditions of PUAE from RNB. A Faced Central
Composite Design (2k + 2k + 1) was applied with the aim to estimate the constant, the linear terms, the
interactions between variables, and the quadratic terms, according to the following model [21]:

Y = b0 + b1X1 + b2X2 + b12X1X2 + b11X1
2 + b22X2

2

The experimental plan, illustrated in Table 1, summarizes the conditions of the nine experiments
performed (namely from RN1 to RN9). The minimum, intermediate, and maximum value of each
variables are labeled as −1, 0, and +1, respectively. A data matrix M9,1402 consisting of nine rows (the
nine samples/extracts obtained by DoE) and 1402 columns (the vector of 701 absorbance values at
different wavelengths in the range of 230–500 nm of the UV-Vis spectra plus 701 fluorescence emissions
in the range of 450–800 nm of the fluorescence spectra), was prepared and further analyzed by the PCA,
a multivariate statistical technique of unsupervised pattern recognition. The scores on PC1 have been



Foods 2019, 8, 466 5 of 14

used as a response variable of the experimental design (Y). In detail, the standard normal variate (SNV)
transform, or row autoscaling, was previously performed on the spectral data in order to revise both
the baseline shifts and the global intensity variations [28]. Subsequently, PCA was performed using the
nonlinear iterative partial least squares (NIPALS) algorithm on the column-centered data [29]. After the
PCA, the scores on PC1, explaining the 90.3% of the total variance, were extracted and used as response
to elaborate DoE. DoE and multivariate data analysis were performed by CAT (Chemometric Agile
Tool) a chemometric software based on R, developed by the Chemistry Group of the Italian Chemical
Society [30]. The data matrix and the detailed PCA analysis is available as Supplementary Materials.

2.7. Analytical Determinations

The most promising extract obtained by PUAE and the corresponding glyceric macerate (RNGM),
in order to make a comparison, were characterized to evaluate their total phenolic contents (TPC) and
their radical scavenging activity (RSA). All the measurements were performed in duplicate and the
results are expressed as mean ± standard deviation (SD). Statistical analysis was performed by the
Excel Data Analysis Tool (Microsoft Corporation, Seattle, WA, USA).

2.7.1. Determination of The Total Phenolic Compounds (TPC)

The Folin-Ciocalteu spectrophotometric method was applied to estimate the TPC of the R. nigrum
bud preparations [31]. 0.2 mL of sample appropriately diluted, 1 mL of Folin-Ciocalteu reagent
(diluted 1:10 with deionized water), 0.8 mL of aqueous sodium carbonate 7.5% w/v solution were
added in a test tube and vortexed. After an incubation period of 30 min at room temperature in the
dark, the absorbance was recorded at 760 nm by an Agilent 8453 UV-Vis spectrophotometer with
1 nm resolution. A calibration curve, using gallic acid as a standard, has been used to evaluate the
polyphenolic concentration. The TPC was expressed as milligrams of gallic acid equivalent (GAE)
pulled-out from 100 mL of bud extract (mg GAE/100 mL).

2.7.2. Determination of Radical Scavenging Activity (RSA)

The DPPH• assay was applied to evaluate the RSA of the R. nigrum bud preparations [32].
Determinations were performed as described in a previous paper [24]. The absorbance at 515 nm was
recorded by an Agilent 8453 UV-Vis spectrophotometer with 1 nm resolution. A multilevel calibration
with ascorbic acid as standard was used to evaluate the RSA and to express the results as milligrams of
ascorbic acid equivalent (AAE) in 100 mL of bud extract (mg AAE/100 mL).

2.8. HPLC Analysis

HPLC methods were used for phytochemical analysis both on R. nigrum bud preparations and
PUAE extracts. Analysis were focused on flavonols, phenolic acids (benzoic and cinnamic acids), and
catechins, as polyphenolic markers with a demonstrated health-promoting activity [33]. Bioactive
compounds were identified and quantified by comparison and combination of their retention times and
UV spectra with those of authentic standards. The calibration parameters for all the employed analytical
standards were previously reported by the authors [22,34]. The total bioactive compound content
(TBCC) was determined as sum of the selected and identified markers with health-promoting activities
and positive antioxidant effects on human health-status according to “multimarker approach” [35]:
phytochemicals were grouped into different bioactive classes in order to evaluate each class contribution
to phytocomplex composition. All analyses were triplicated and the results expressed as mg/100 g of
fresh weight (FW).

Samples were filtered with circular pre-injection filters (0.45 µm, polytetrafluoroethylene
membrane) prior to HPLC-DAD analysis. Chromatographic analysis was carried out using an
Agilent 1200 High-Performance Liquid Chromatograph coupled to an Agilent UV-Vis diode array
detector (Agilent Technologies, Santa Clara, CA, USA), based on HPLC methods previously validated
for fresh fruits, herbal medicines, and other food products [2,22,23]. Chromatographic conditions
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were set in order to obtain a phytochemical information with a good resolution and a reasonable
analysis time.

Bioactive molecule separation was achieved on a Kinetex C18 column (4.6 mm × 150 mm, 5 µm,
Phenomenex, Torrance, CA, USA). Different mobile phases were used for bioactive compound
characterization and several linear gradients in different slopes were optimized because some
compounds were similar in structure with each other in the same chemical class: (1) a solution
of 10 mM KH2PO4/H3PO4 and acetonitrile with a flow rate of 1.5 mL·min−1 (method A—analysis of
cinnamic acids and flavonols); (2) a solution of methanol/water/formic acid (5:95:0.1 v/v/v) and a mix of
methanol/formic acid (100:0.1 v/v) with a flow rate of 0.6 mL·min−1 (method B—analysis of benzoic
acids and catechins). Selected wavelengths were suitable to achieve more specific peaks as well as a
smooth baseline after a full scan on the chromatogram from 190 to 400 nm; in particular, UV spectra
were recorded at 330 nm (A) and 280 nm (B). Information on used chromatographic methods and
selected markers are reported in the Supplementary material.

3. Results and Discussion

3.1. Optimization of The PUAE Experimental Conditions by DoE Using Untargeted Phytochemical Fingerprint

The PUAE conditions have been optimized by a Faced Central Composite Design (CCD), whose
results are shown in Table 1. The DoE response variable to be optimized was obtained by an untargeted
spectroscopic method combined with chemometrics previously described by the authors [2,20]. Briefly
each of the nine extracts, obtained according the experimental plan and spectroscopic analyzed,
was described by a vector of 701 UV-Vis absorbances plus 701 fluorescence emissions, as a holistic
nontargeted fingerprint 1402-dimensional of the corresponding extract. Since these multivariate
vectors of UV-Vis absorptions and fluorescence emissions (701 + 701 variables) of each extract have
been proven to be strictly correlated to the whole polyphenolic fraction of the extracts they were
combined in a multivariate data matrix: The DoE response matrix. This matrix, composed of nine rows
and 1402 columns (M9,1402: nine objects corresponding to the nine experiments and 1402 variables
which represent the spectral absorptions/emissions), has been elaborated by principal component
analysis (PCA), an unsupervised patter recognition technique, in order to extract the useful analytical
information and to reduce its dimensionality.

The untargeted polyphenolic phytochemical fingerprints (UV-Vis absorptions and Fluorescence
emissions) of each extract obtained by DoE were reported in Figure 1 and compared with the
corresponding commercial product RNGM.

Figure 2 shows the score-plot on the first two principal components (PCs), whose explained
variance are 90.3% and 6.8%, respectively.

The first PC (PC1) retains all the useful information of the 1402 original variables and thus the
corresponding scores were used as the response variable of each experiment in the experimental matrix.
The other PCA details are reported in the Supplementary Materials (i.e., score matrix, loading matrix,
eigenvalues, explained variance plot). The following model of the CCD has been obtained by applying
multiple linear regression to the experimental matrix:

Y = −2.6708 − 0.6814X1 * − 1.2487X2 ** − 0.1010X1X2 + 2.6000X1
2 ** 1.4061X2

2 *

* indicates the significance of the coefficients: * = p < 0.05, ** = p < 0.01.
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All the linear and quadratic terms are significant as highlighted in the plot of the coefficients
(Figure 3).
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Particularly, the linear term X2 (** = p < 0.01) corresponding to the extraction time, the quadratic
term X1

2 (** = p < 0.01), the linear term X1 (* = p < 0.05) corresponding to the duty cycle, and the
quadratic term X2

2 (* = p < 0.05) are the statistically significant coefficients. They should be increased or,
on the contrary, decreased to improve or to minimize the Y response variable respectively. Experiments
whose scores on PC1 are negative (Figure 2) correspond to the highest absorptions/emissions of the
phytocomplex as shown in Figure 1, thus they must be decreased. RN8 represents the best experimental
conditions and this extract has been analytically characterized and compared with RNGM.

3.2. Analytical Characterization of The Most Promising PUAE Extract (RN8) and the Corresponding RNGM

3.2.1. Determination of the Total Phenolic Compounds (TPC) and the Radical Scavenging
Activity (RSA)

RN8, representing the most promising R. nigrum extract obtained by PUAE, and the corresponding
RNGM, were analytically characterized to evaluate their total phenolic contents (TPC) and their radical
scavenging activity (RSA). As reported in Table 2, both the bud preparations presented quantitatively
similar RSA values: 1158.58 ± 73.24 mg/100 mL of bud extract for RN8 and 1137.04 ± 38.49 mg/100 mL
of bud extract for RNGM, respectively. Regarding TPC, RN8 showed a higher value with respect to
RNGM (415.56 ± 5.52 mg/100 mL vs. 276.44 ± 3.85 mg/100 mL). However, the Folin-Ciocalteu assay is
a nonspecific method to quantify phenols and polyphenols. In fact, this reagent does not measure
only phenols, but can react with some reducing substances (i.e., ascorbic acid) [36]. For this reason, the
phenol content could be overestimated and further investigations on the phytocomplex composition
should be carried out. Nevertheless, the higher value of RN8 is promising and indicative of almost no
oxidative alterations potentially induced by ultrasounds with respect to maceration.
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Table 2. Total phenolic compounds (TPC) and radical scavenging activity (RSA) of the most promising
R. nigrum extract obtained by pulsed ultrasound-assisted extraction (PUAE) (RN8) compared to the
corresponding commercial product (RNGM).

Determination
RNGM RN8

Mean Value SD Mean Value SD

TPC mg GAE/100 mL bud extract 276.44 3.85 415.56 5.52
RSA mg AAE/100 mL bud extract 1137.04 38.49 1158.58 73.24

Results are reported as mg/100 mL of bud extract and expressed as mean value ± standard deviation (SD) (n = 2).
GAE: gallic acid equivalent; AAE: ascorbic acid equivalent.

3.2.2. Targeted Phytochemical Fingerprint

Antioxidant compounds (in particular, polyphenols) may play a critical health-promoting role in
humans for disease prevention due to their synergistic or additive biological effects (phytocomplex) that
influence human health better than a single molecule or a group of few compounds [37]. In this study,
13 biologically active compounds (grouped into four polyphenolic classes) were selected as markers
for fingerprint analysis because they have been described as important health-effective substances in
humans [38]. The phytochemical fingerprints of RNGM and RN8 are reported in Table 3.

Table 3. Targeted phytochemical fingerprint by HPLC-DAD of the polyphenolic compounds in the
most promising R. nigrum extract (RN8) obtained by PUAE compared to the corresponding glyceric
macerate (RNGM).

Bioactive Class Compound
RNGM RN8

Mean Value SD Mean Value SD

(mg/100 g FW) (mg/100 g FW)

Cinnamic acids

caffeic acid 22.48 0.04 20.76 0.48
chlorogenic acid n.d. / n.d. /
coumaric acid 5.21 0.15 1.05 0.25

ferulic acid n.d. / n.d. /

Flavonols

hyperoside n.d. / n.d. /
isoquercitrin n.d. / n.d. /

quercetin 49.53 0.49 80.14 1.08
quercitrin 30.86 0.85 48.18 0.94

rutin 17.25 0.22 20.88 0.48

Benzoic acids
ellagic acid 69.66 0.08 75.37 0.30
gallic acid 0.31 0.09 0.64 0.05

Catechins
catechin 95.88 0.26 55.85 2.78

epicatechin 59.83 0.37 49.08 0.48

Results are reported as mg/100 g of bud fresh weight (FW) and expressed as mean value ± standard deviation (SD)
(n = 3). * n.d. = not detectable.

Among the analyzed compounds, chlorogenic acid, ferulic acid, hyperoside, and isoquercitrin
were not detected. Bioactive compounds were separated and identified via HPLC-DAD. Adding other
markers with demonstrated biological activity may be a necessary step for a better identification of the
chromatographic pattern in further fingerprint studies together with a mass spectrometry detection of
unknown peaks.

In RNGM samples, catechins were the most important bioactive class (44.36%), with flavonols
as the second most abundant (27.82%), followed by benzoic acids and cinnamic acids (19.93% and
7.89%, respectively), while in PUAE extracts RN8, the quantitative relationships between catechins and
flavonols were reversed: 29.81% for catechins and 42.39% for flavonols, while cinnamic acids (6.20%)
and benzoic acids (21.60%) showed percentages similar to the bud macerates (Figure 4).



Foods 2019, 8, 466 10 of 14

Foods 2019, 8, x FOR PEER REVIEW 10 of 14 

 

In RNGM samples, catechins were the most important bioactive class (44.36%), with flavonols 
as the second most abundant (27.82%), followed by benzoic acids and cinnamic acids (19.93% and 
7.89%, respectively), while in PUAE extracts RN8, the quantitative relationships between catechins 
and flavonols were reversed: 29.81% for catechins and 42.39% for flavonols, while cinnamic acids 
(6.20%) and benzoic acids (21.60%) showed percentages similar to the bud macerates (Figure 4). 

 
Figure 4. Contribution of each polyphenolic class to the total phytocomplex in RN8 and RNGM 
analyzed samples. 

Figure 5 reports the polyphenolic chromatographic profile of analyzed samples: RNGM and 
RN8 presented qualitatively and quantitatively similar phenolic patterns. The most important 
differences were only detected in four compounds: (i) quercetin (48.53 ± 0.49 mg/100 g of bud fresh 
weight, FW, for RNGM and 80.14 ± 1.08 mg/100 g FW for RN8); (ii) quercitrin (30.86 ± 0.85 mg/100 g 
FW for RNGM and 48.18 ± 0.94 mg/100 g FW for RN8); (iii) catechin (95.88 ± 0.26 mg/100 g FW for 
RNGM and 55.85 ± 2.78 mg/100 g FW for RN8); (iv) epicatechin (59.83 ± 0.37 mg/100 g FW for 
RNGM and 49.08 ± 0.48 mg/100 g FW for RN8). Caffeic acid showed levels slightly higher in 
RNGM, while ellagic acid presented levels slightly higher in RN8. 

Our results highlight that the traditional glyceric macerate and the alternative PUAE extract 
show similar total polyphenolic levels (and a qualitatively similar chromatographic pattern), but 
some differences in specific bioactive compounds (in particular, flavonols and catechins) were also 
detected, due to the different extraction method [39]. For this reason, PUAE yielded an extract rich 
in biological active molecules with potentially high health-promoting activity, but maybe with a 
practical use which could be different from traditional bud preparations. In any case, this research 
is only a preliminary study and further phytochemical, clinical, toxicological, and pharmaceutical in 
vitro and in vivo tests should be carried out to confirm this preliminary hypothesis. 
  

0% 20% 40% 60% 80% 100%

RNGM

RN8

Cinnamic acids

Flavonols

Benzoic acids

Catechins

Figure 4. Contribution of each polyphenolic class to the total phytocomplex in RN8 and RNGM
analyzed samples.

Figure 5 reports the polyphenolic chromatographic profile of analyzed samples: RNGM and RN8
presented qualitatively and quantitatively similar phenolic patterns. The most important differences
were only detected in four compounds: (i) quercetin (48.53 ± 0.49 mg/100 g of bud fresh weight, FW,
for RNGM and 80.14 ± 1.08 mg/100 g FW for RN8); (ii) quercitrin (30.86 ± 0.85 mg/100 g FW for
RNGM and 48.18 ± 0.94 mg/100 g FW for RN8); (iii) catechin (95.88 ± 0.26 mg/100 g FW for RNGM
and 55.85 ± 2.78 mg/100 g FW for RN8); (iv) epicatechin (59.83 ± 0.37 mg/100 g FW for RNGM and
49.08 ± 0.48 mg/100 g FW for RN8). Caffeic acid showed levels slightly higher in RNGM, while ellagic
acid presented levels slightly higher in RN8.

Our results highlight that the traditional glyceric macerate and the alternative PUAE extract
show similar total polyphenolic levels (and a qualitatively similar chromatographic pattern), but some
differences in specific bioactive compounds (in particular, flavonols and catechins) were also detected,
due to the different extraction method [39]. For this reason, PUAE yielded an extract rich in biological
active molecules with potentially high health-promoting activity, but maybe with a practical use which
could be different from traditional bud preparations. In any case, this research is only a preliminary
study and further phytochemical, clinical, toxicological, and pharmaceutical in vitro and in vivo tests
should be carried out to confirm this preliminary hypothesis.
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4. Conclusions

In this work, PUAE, as an alternative time-saving method to produce R. nigrum bud derivatives,
was presented according to the green chemistry principles. The unconventional extraction conditions
were optimized by DoE at the lab scale using untargeted fingerprints coupled to chemometrics, but
this same quick strategy could be analogously applied to transfer this method to an industrial scale.
The impact of the UAE with respect to traditional maceration was evaluated in terms of recovering of
the total phenolic content, the antiradical scavenging activity and the profiles of the most important
bioactive compounds. In particular, PUAE provided the extract named RN8 in a few minutes, compared
to the 21 day-long maceration, whose total polyphenolic levels and antiradical scavenging are similar
or even slightly increased with respect to RNGM. Furthermore, RN8 presents a qualitatively similar
chromatographic pattern, even if some differences in flavonols and catechins were detected. Due to
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these differences, an LC-MS study of RN8 is mandatory in the near future. Nevertheless, this is a
promising preliminary result to provide alternative uses of Ribes nigrum bud derivatives using this
unconventional time-saving extraction method.

Supplementary Materials: Supplementary materials are available online at http://www.mdpi.com/2304-8158/8/
10/466/s1. Table S1: score matrix; Table S2: loading matrix; Table S3: eigenvalue matrix; Table S4: chromatographic
conditions. Figure S1: percentage of explained variance plot.
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